SH3. 綠能之道話地熱

設計者: 李巧柔

設計理念:

因為氣候變遷,深知地球村一員,化石燃料會影響環境,致力於將燃煤發電轉換為乾淨能源,以地理位置圖與斷層圖,分析新北地熱能分布為例,探討地熱的現況與 思考未來發展。

本課程透過分組討論釐清新北市有哪些地熱與應用情況,進而介紹宜蘭清水打造 金山四磺子坪地熱情況,了解地熱能應用技術,若有時間可以加入介紹史特靈引擎利 用熱能推動活塞運轉。

本課程建議能整合校訂課程與科技領域課程。

主題架構說明:

教學單元	學習活動	學習重點
新北地熱能	新北低碳生活網 資料討論新北地熱能 以及思考為來地熱能 應用方式。	透過地熱發展史了解地熱的現況,以 新北地熱藉宜蘭清水打造金山四磺子坪 為例。

教學單元設計

須!	 域 / 科目	■自然 ■社會	關鍵詞	地熱、替代能源		
學習階段		高中職	節數	2		
7 1117		自V.1-U-A1能培養探索科學的興趣與熱	. , 2, -			
		養成主動學習科學新知的習	•	.,		
		啟發生涯規劃與自我追求。				
村	亥心素養	社-U-C1 具備對道德、人 權、環境與公共 議題的思考與對 話素				
				•		
		養,健全良 好品德、提升公 民意識,主動參 與環境保育 與社 會公共事務。				
		1-V. 1-1 能主動察覺問題,進而設計科		 與實驗。		
	學習表現	2-V. 1-1 能察覺問題,並以科學方法解決。				
sta	1 4,76,76	地 3d-V-2 小組合作共同執行解決問		各,並發表執行成果。		
學		PBa- V. 1-1 能量的形式。	<u> </u>			
習		PBa-V. 1-3 能量轉換及能量守恆。				
重		CNc-V. 1-5 簡介臺灣的再生能源及附近	海域能	源的蘊藏與開發。		
點	學習內容	地 Ba-V-1 大氣圈、岩石圈 (表層)、水圈及生物圈的有機關聯。				
		地 Ba-V-3 探究活動:利用古今地圖或地理資訊平台,探索學校所				
		在地的環境系統與日常生活的互動關聯。				
議		能 U1 養成正確的能源價值觀。				
題		能 U6 理解我國與國際間能源使用情形及未來發展。				
融	實質內涵	能 U7 分析新興能源的發展現況及未來趨勢。				
入						
		新北地熱能				
學習目標		1. 從探索新北低碳生活網資料出發,討論新北那些地方具有地				
		熱能以及思考未來地熱能應用方式。				
教學設備/資		一、教學設備:				
		電腦				
1 教与	字政備/貝源	二、教學資源:				
		1. 再生能源知識館:				
		https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704				
		数趣 江動				

教學活動

新北地熱能		學習重點	評量	
THI POS SMI AG	(分鐘)	7 7 2 2 10	-, <u>-</u>	
一、引起動機:				
● 討論全球地熱資源:	5	能 U1	口頭發表	
1. 環太平洋帶,東邊是美國西海岸,南邊是紐		能 U6		
西蘭,西邊有印尼、菲律賓、日本還有臺灣。		能 U7		
2. 大西洋中洋脊帶,大部分在海洋,北端穿過		PBa-V. 1-1		
冰島。				

3. 地中海到喜馬拉雅山,包括義大利和中國西藏。 老師說明義大利早在1904年即率先應用地熱蒸汽成功運轉10 kWe 的發電機發電,為全世界第一個地熱發電國家,接著美國在1922年建立世界第二座地熱發電廠,全球開發應用的風潮在二次世界大戰之後正式設有地熱發應與,總裝置容量約10,717 MWe (IGA網站, 2013)。 二、發展活動: 老師在黑板當出臺灣地圖,請學生分組探討臺灣潛能地熱區之分布、企為等,並在與板標出位置,					
● 老師說明義大利早在1904年即率先應用地熱蒸 汽成功運轉10 kWe 的發電機發電,為全世界第 一個地熱發電國家,接著美國在1922年建立世 界第二座地熱發電廠,全球開發電展,總裝置容 量約10,717 MWe (IGA 網站, 2013)。 二、發展活動: ● 老師在黑板畫出臺灣地國,請學生分組探討臺灣 潛能地熱區之分布,也括大屯山、清水、土場、 廬山、瑞穗、知本、金崙等,並在黑板標出位置。 ● 標出新北市那些位置具有地熱能與分享現況利用 情形。這些地點包括金山、萬里與烏來等地。 ● 教師介紹地熱發電模式,包括地熱井引出熱 水至分離影後產生蒸氣,推動電氣,以及在熱源 以及工作流體兩個封開循環的發電系統,產 生推力推動發電機組已達發電目的。 (見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id= 704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘 工作集中在臺灣北部之大屯火山群地熱區。經 六年之調查探勘發現地熱潛能相當豐富,可惜 水質偏酸具腐蝕性,如欲開發利用,需使用耐 酸預熱硬具腐蝕性,如欲開發利用,需使用耐 酸抗缺發電的難度。 ■ 工業技術研究院於 1977 年在宜蘭清水地熱區 建造第一座 1,500 kW 地熱試驗電廠,並於 1981 年3 MW 地熱電廠,可惜之後發現熱液在 孔內結垢問題,導致發電量逐年遞減,於 1993 年停止發電試驗。 ■ 工業技術研究性於 2012年推動清水地熱 ROT 計畫, 基本發電裝置容量 1 MW,並同意簽約後三年 內申請增加到 3 MW。		3. 地中海到喜馬拉雅山,包括義大利和中國西			
汽成功運轉 10 k₩e 的發電機發電,為全世界第一個地熱發電國家,接著美國在 1922 年建立世界第二座地熱發電廠。後至 2010 年為止,全世界有 25 個國家設有地熱發電廠,總裝置容量約 10,717 MWe (IGA 網站, 2013)。 二、發展活動: ● 老師在黑板畫出臺灣地圖,請學生分組探討臺灣 40 環 U7 環 U7 層能地熱區之分布,包括大屯山、清水、土場、處山、瑞糖、知本、金崙等,並在黑板標出位置。 標出新北市那些位置具有地熱能與分享現況利用情形。這些地點包括金山、萬里與烏來等地。 ● 教師介紹地熱發電模式,包括地熱井引出熱水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電系統,產生推力推動發電機組已達發電目的。(見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛發相用。需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 ■ 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,可惜入發發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993 年停止發電試驗。 ■ 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		藏。			
一個地熱發電國家,接著美國在1922年建立世界第二座地熱發電廠,全球開發應用的風潮在二次世界有25個國家設有地熱發電廠,總裝置容量約10,717 MWe (IGA 網站,2013)。 二、發展活動: 老師在黑板畫出臺灣地圖,請學生分組探討臺灣 40 環 UT	•	老師說明義大利早在1904年即率先應用地熱蒸			
界第二座地熱發電廠,全球開發應用的風潮在二次世界大戰之後正式展開。截至 2010 年為止,全世界有 25 個國家設有地熱發電廠,總裝置容量约 10,717 MWe (IGA 網站, 2013)。 二、發展活動: ◆老師在黑板畫出臺灣地圖,請學生分組探討臺灣潛能地熱區之分布,包括大屯山、清水、土場、應山、端穗、知本、金崙等,並在黑板標出位置。 ●標出新北市那些位置具有地熱能與分享現況利用情形。這些地點包括盆山、萬里與鳥來等地。 ◆教師介紹地熱發電模式,,包括地熱井引出熱水至分離器後產生蒸氣,推動渦渦輪轉動發電機轉為電能的閃發蒸氣式環的發電系統,產生推力推動發電機超已達發電目的。 (見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ●經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣勘發現熱放稅用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993 年停止發電試驗。 ●宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		汽成功運轉 10 kWe 的發電機發電,為全世界第			
次世界大戰之後正式展開。截至 2010 年為止,全世界有 25 個國家設有地熱發電廠,總裝置容量約 10,717 MWe (IGA 網站, 2013)。 二、發展活動: ● 老師在黑板畫出臺灣地圖,請學生分組探討臺灣潛能地熱區之分布,包括大屯山、清水、土場、廬山、瑞穂、知本、金崙等,並在黑板標出位置。 ● 標出新北市那些位置具有地熱東與今享現汎利用情形。這些地點包括金山、萬里與烏來等地。 ◆ 教師介紹地熱發電模式,包括地熱井引出熱水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電,以及在熱源以及工作流體兩個封閉循環的發電系統,產生推力推動發電機組已達發電目的。 (見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 ■ 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱或廠電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遙滅,於 1993 年停止發電試驗。 ● 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		一個地熱發電國家,接著美國在1922年建立世			
全世界有 25 個國家設有地熱發電廠,總裝置容量約 10,717 MWe (IGA 網站, 2013)。 二、發展活動: ● 老師在黑板畫出臺灣地圖,請學生分組探討臺灣潛能地熱區之分布,包括大屯山、清水、土場、廬山、瑞穂、知本、金崙等,並在黑板標出位置,情形。這些地點包括金山、萬里與鳥來等地。 ● 教師介紹地熱發電模式,包括地熱井引出熱水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電,以及在熱源以及工作流體兩個封閉循環的發電系統,產生推力推動發電機組已達發電目的。 (見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遙減,於 1993 年停止發電試驗。 ● 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		界第二座地熱發電廠,全球開發應用的風潮在二			
量約 10,717 MWe (IGA 網站, 2013)。 二、發展活動: 老師在黑板畫出臺灣地圖,請學生分組探討臺灣潛能地熱區之分布,包括大屯山、清水、土場、廬山、瑞穗、知本、金崙等,並在黑板標出位置。 ●標出新北市那些位置具有地熱能與分享現況利用情形。這些地點包括金山、萬里與烏來等地。 ●教師介紹地熱發電模式,包括地熱井引出熱水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電,或及在熱源以及工作遭險電機組已達發電目的。(見馬生能源知識館:(見馬生能源知識館:(見馬生能源知識館:(見馬生能源知識館:大年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸損備,較高的成本不符合經濟條件,增加開發地熱潛能相當豐富,可惜水質偏酸損備,較高的成本不符合經濟條件,增加開發過熱發電的難度。 工業技術發電的難度。 工業技術發電的難度。 工業技術發電的難度。 工業技術發明地熱電廠,並於1981年3 MW 地熱電廠,並於1981年3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於1993年停止發電試驗。 ● 直蘭縣政府於 2012年推動清水地熱 ROT計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		次世界大戰之後正式展開。截至2010年為止,			
■ 老師在黑板畫出臺灣地圖,請學生分組探討臺灣		全世界有 25 個國家設有地熱發電廠,總裝置容			
● 老師在黑板畫出臺灣地圖,請學生分組探討臺灣潛能地熱區之分布,包括大屯山、清水、土場、廬山、瑞穗、知本、金崙等,並在黑板標出位置。 ● 標出新北市那些位置具有地熱能與分享現況利用情形。這些地點包括金山、萬里與烏來等地。 ● 教師介紹地熱發電模式,包括地熱井引出熱水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電,以及在熱源以及工作流體兩個封閉循環的發電系統,產生推力推動發電機組已達發電目的。(見再生能源知識館:https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 ■ 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993 年停止發電試驗。 ● 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		量約 10,717 MWe (IGA 網站, 2013)。			
潛能地熱區之分布,包括大屯山、清水、土場、廬山、瑞穗、知本、金崙等,並在黑板標出位置。 標出新北市那些位置具有地熱能與分享現況利用情形。這些地點包括金山、萬里與烏來等地。 教師介紹地熱發電模式,包括地熱井引出熱水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電,以及在熱源以及工作流體兩個封閉循環的發電系統,產生推力推動發電機組已達發電目的。 (見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ●經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 - 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993年停止發電試驗。 - 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。	=	· 發展活動:			
應山、瑞穗、知本、金崙等,並在黑板標出位置。標出新北市那些位置具有地熱能與分享現況利用情形。這些地點包括金山、萬里與烏來等地。 ● 教師介紹地熱發電模式,包括地熱井引出熱水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電,以及在熱源以及工作流體兩個封閉循環的發電系統,產生推力推動發電機組已達發電目的。(見再生能源知識館:https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 ● 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993年停止發電試驗。 ● 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。	•	老師在黑板畫出臺灣地圖,請學生分組探討臺灣	40	環 U1	分組討論
● 標出新北市那些位置具有地熱能與分享現況利用情形。這些地點包括金山、萬里與鳥來等地。 ● 教師介紹地熱發電模式,包括地熱井引出熱水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電,以及在熱源以及工作流體兩個對閉循環的發電系統,產生推力推動發電機組已達發電目的。(見再生能源知識館:https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 ■ 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993年停止發電試驗。 ■ 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		潛能地熱區之分布,包括大屯山、清水、土場、		環 U7	
● 標出新北市那些位置具有地熱能與分享現況利用情形。這些地點包括金山、萬里與烏來等地。 ● 教師介紹地熱發電模式,包括地熱井引出熱水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電,以及在熱源以及工作流體兩個封閉循環的發電系統,產生推力推動發電機組已達發電目的。(見再生能源知識館:https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 ■ 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993年停止發電試驗。 ■ 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。				1-V. 1-1	
● 教師介紹地熱發電模式,包括地熱井引出熱水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電,以及在熱源以及工作流體兩個對閉循環的發電系統,產生推力推動發電機組已達發電目的。(見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸異腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的放度、工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993年停止發電試驗。 ● 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。	•			PBa-V. 1-3	
水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電,效及在熱源以及工作流體兩個封閉循環的發電系統,產生推力推動發電機組已達發電目的。(見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ●經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,輸到整定至遞減,於 1993年停止發電試驗。 • 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		情形。這些地點包括金山、萬里與烏來等地。		CNc-V. 1-5	
水至分離器後產生蒸氣,推動渦輪轉動發電機轉為電能的閃發蒸氣式發電的發電系統,產生推力推動發電機組已達發電目的。 (見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ●經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,驗。 可蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。	•	教師介紹地熱發電模式,包括地熱井引出熱		Ba-V-3	
機轉為電能的閃發蒸氣式發電,以及在熱源 以及工作流體兩個封閉循環的發電系統,產 生推力推動發電機組已達發電目的。 (見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id= 704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘 工作集中在臺灣北部之大屯火山群地熱區。經 六年之調查探勘發現地熱潛能相當豐富,可惜 水質偏酸具腐蝕性,如欲開發利用,需使用耐 酸抗蝕設備,較高的成本不符合經濟條件,增 加開發地熱發電的難度。 工業技術研究院於 1977 年在宜蘭清水地熱區 建造第一座 1,500 kW 地熱試驗電廠,並於 1981 年 3 MW 地熱電廠,可惜之後發現熱液在 孔內結時問題,導致發電量逐年遞減,於 1993 年停止發電試驗。 ● 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫, 基本發電裝置容量 1 MW,並同意簽約後三年 內申請增加到 3 MW。					
以及工作流體兩個封閉循環的發電系統,產生推力推動發電機組已達發電目的。 (見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 - 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993年停止發電試驗。 - 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。					
生推力推動發電機組已達發電目的。 (見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ●經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993年停止發電試驗。 「宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。					
(見再生能源知識館: https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ● 經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993年停止發電試驗。 ● 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。					
https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704) ●經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993年停止發電試驗。 ● 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。					
 ●經濟部礦業研究所於 1966 年起進行地熱探勘工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 ●工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993年停止發電試驗。 ● 直蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。 					
工作集中在臺灣北部之大屯火山群地熱區。經六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993 年停止發電試驗。 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		<u>704</u>)			
六年之調查探勘發現地熱潛能相當豐富,可惜水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 工業技術研究院於1977年在宜蘭清水地熱區建造第一座1,500 kW 地熱試驗電廠,並於1981年3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於1993年停止發電試驗。 宜蘭縣政府於2012年推動清水地熱ROT計畫,基本發電裝置容量1 MW,並同意簽約後三年內申請增加到3 MW。	•	經濟部礦業研究所於 1966 年起進行地熱探勘			
水質偏酸具腐蝕性,如欲開發利用,需使用耐酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 工業技術研究院於1977年在宜蘭清水地熱區建造第一座1,500 kW 地熱試驗電廠,並於1981年3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於1993年停止發電試驗。 宜蘭縣政府於2012年推動清水地熱ROT計畫,基本發電裝置容量1 MW,並同意簽約後三年內申請增加到3 MW。		工作集中在臺灣北部之大屯火山群地熱區。經			
酸抗蝕設備,較高的成本不符合經濟條件,增加開發地熱發電的難度。 工業技術研究院於1977年在宜蘭清水地熱區建造第一座1,500 kW 地熱試驗電廠,並於1981年3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於1993年停止發電試驗。 宜蘭縣政府於2012年推動清水地熱ROT計畫,基本發電裝置容量1 MW,並同意簽約後三年內申請增加到3 MW。		六年之調查探勘發現地熱潛能相當豐富,可惜			
加開發地熱發電的難度。 工業技術研究院於 1977 年在宜蘭清水地熱區建造第一座 1,500 kW 地熱試驗電廠,並於 1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993 年停止發電試驗。 重蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		水質偏酸具腐蝕性,如欲開發利用,需使用耐			
 工業技術研究院於1977年在宜蘭清水地熱區建造第一座1,500 kW 地熱試驗電廠,並於1981年3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於1993年停止發電試驗。 宜蘭縣政府於2012年推動清水地熱ROT計畫,基本發電裝置容量1 MW,並同意簽約後三年內申請增加到3 MW。 		酸抗蝕設備,較高的成本不符合經濟條件,增			
建造第一座 1,500 kW 地熱試驗電廠,並於 1981 年 3 MW 地熱電廠,可惜之後發現熱液在 孔內結垢問題,導致發電量逐年遞減,於 1993 年停止發電試驗。		加開發地熱發電的難度。			
1981 年 3 MW 地熱電廠,可惜之後發現熱液在孔內結垢問題,導致發電量逐年遞減,於 1993年停止發電試驗。 ■ 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。	•	工業技術研究院於1977年在宜蘭清水地熱區			
孔內結垢問題,導致發電量逐年遞減,於 1993 年停止發電試驗。 ● 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫, 基本發電裝置容量 1 MW,並同意簽約後三年 內申請增加到 3 MW。		建造第一座 1,500 kW 地熱試驗電廠,並於			
年停止發電試驗。 ● 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		1981 年 3 MW 地熱電廠,可惜之後發現熱液在			
年停止發電試驗。 ● 宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,基本發電裝置容量 1 MW,並同意簽約後三年內申請增加到 3 MW。		孔內結垢問題,導致發電量逐年遞減,於1993			
基本發電裝置容量 1 MW,並同意簽約後三年 內申請增加到 3 MW。		年停止發電試驗。			
基本發電裝置容量 1 MW,並同意簽約後三年 內申請增加到 3 MW。	•	宜蘭縣政府於 2012 年推動清水地熱 ROT 計畫,			
		基本發電裝置容量 1 MW,並同意簽約後三年			
● 工業技術研究院在宜蘭清水地熱公園建造					
	•	工業技術研究院在宜蘭清水地熱公園建造			
300kW 雙循環地熱發電機組,目前以 24 小時併		300kW 雙循環地熱發電機組,目前以 24 小時併			
網運轉中,對地熱發電示範有正面的啟示。		網運轉中,對地熱發電示範有正面的啟示。			

三	、 綜合活動	; :			
•	● 老師歸納地熱能應用的優缺點。			環 U7	
•	● 回家請學生探討各國地熱能使用情況與應用技術			Ba-V-1	
	完成專題報	设告。			
		《第一節課結束》			
•	請學生分享	区各國地熱能使用情況與應用技術專題	50	2-V. 1-1	口頭發表
	報告			3d-V-2	
		《第二節課結束》			
		参考網站 :			
	1. 再生能源知識館:				
	https://www.re.org.tw/knowledge/more.aspx?cid=202&id=704				
3	延伸閱讀 2. 科技部科技大觀園				
https://scitochyista.nat.govtw/c/sgk/\ htm					

延伸閱讀 /補充資料

https://scitechvista.nat.gov.tw/c/sgkA.htm

3. 地熱能發電系統示範獎勵辦法

https://www.moeaboe.gov.tw/ECW/populace/Law/Content.aspx?menu_id=2028

4. 地熱發電資訊網

https://www.geothermal-taiwan.org.tw/Intro/Page2#

世界地熱 https://energymagazine.itri.org.tw/Cont.aspx?CatID=19&ContID=2634

地熱發電約可使用 20 至 40 年,模式包括地熱井引出熱水至分離器後產生蒸氣,推動 渦輪轉動發電機轉為電能的閃發蒸氣式發電,以及在熱源以及工作流體兩個封閉循環 的發電系統,產生推力推動發電機組已達發電目的。

地熱可產生電能的時間是______性的,不像太陽能或風力取決於設置地點的天候,若是場址較佳的地熱電廠搭配最新的發電技術,容量因數甚至可達 90%以上,具備基載電力特性,這是地熱發電的重要優勢之一。

產量請根據圖1排出順序:


臺灣地熱 https://scitechvista.nat.gov.tw/c/sgdv.htm

臺灣潛能地熱區之分布,包括大屯山、清水、土場、廬山、瑞穂、知本、金崙等,請在圖2上標出位置。綜合上述,可將臺灣地熱歸類,多落在1000公尺以內,深度小於4公里,地溫超過175度以上的特徵。

結論歸類成四大地區分別是:______

地熱發電史與應用的優缺點 https://news.ltn.com.tw/news/local/paper/882863

優點:

缺點:

地熱能源生產大國 TOP10

前三名分別是:_____

除了宜蘭清水,以新北市為例,目前哪裡有發展地熱?